IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v32y2012i3pe1-e10.html
   My bibliography  Save this article

Adaptation of Clinical Prediction Models for Application in Local Settings

Author

Listed:
  • Teus H. Kappen
  • Yvonne Vergouwe
  • Wilton A. van Klei
  • Leo van Wolfswinkel
  • Cor J. Kalkman
  • Karel G. M. Moons

Abstract

Background. When planning to use a validated prediction model in new patients, adequate performance is not guaranteed. For example, changes in clinical practice over time or a different case mix than the original validation population may result in inaccurate risk predictions. Objective. To demonstrate how clinical information can direct updating a prediction model and development of a strategy for handling missing predictor values in clinical practice. Methods. A previously derived and validated prediction model for postoperative nausea and vomiting was updated using a data set of 1847 patients. The update consisted of 1) changing the definition of an existing predictor, 2) reestimating the regression coefficient of a predictor, and 3) adding a new predictor to the model. The updated model was then validated in a new series of 3822 patients. Furthermore, several imputation models were considered to handle real-time missing values, so that possible missing predictor values could be anticipated during actual model use. Results. Differences in clinical practice between our local population and the original derivation population guided the update strategy of the prediction model. The predictive accuracy of the updated model was better (c statistic, 0.68; calibration slope, 1.0) than the original model (c statistic, 0.62; calibration slope, 0.57). Inclusion of logistical variables in the imputation models, besides observed patient characteristics, contributed to a strategy to deal with missing predictor values at the time of risk calculation. Conclusions. Extensive knowledge of local, clinical processes provides crucial information to guide the process of adapting a prediction model to new clinical practices.

Suggested Citation

  • Teus H. Kappen & Yvonne Vergouwe & Wilton A. van Klei & Leo van Wolfswinkel & Cor J. Kalkman & Karel G. M. Moons, 2012. "Adaptation of Clinical Prediction Models for Application in Local Settings," Medical Decision Making, , vol. 32(3), pages 1-10, May.
  • Handle: RePEc:sae:medema:v:32:y:2012:i:3:p:e1-e10
    DOI: 10.1177/0272989X12439755
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X12439755
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X12439755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephana J Cherak & Andrea Soo & Kyla N Brown & E Wesley Ely & Henry T Stelfox & Kirsten M Fiest, 2020. "Development and validation of delirium prediction model for critically ill adults parameterized to ICU admission acuity," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    2. Jiakun Jiang & Wei Yang & Erin M. Schnellinger & Stephen E. Kimmel & Wensheng Guo, 2023. "Dynamic logistic state space prediction model for clinical decision making," Biometrics, The International Biometric Society, vol. 79(1), pages 73-85, March.
    3. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:32:y:2012:i:3:p:e1-e10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.