IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v28y2008i4p593-605.html
   My bibliography  Save this article

Modeling the Incubation Period of Inhalational Anthrax

Author

Listed:
  • Dean A. Wilkening

    (Center for International Security and Cooperation, Stanford University, Stanford, California, wilkening@stanford.edu)

Abstract

Ever since the pioneering work of Philip Sartwell, the incubation period distribution for infectious diseases is most often modeled using a lognormal distribution. Theoretical models based on underlying disease mechanisms in the host are less well developed. This article modifies a theoretical model originally developed by Brookmeyer and others for the inhalational anthrax incubation period distribution in humans by using a more accurate distribution to represent the in vivo bacterial growth phase and by extending the model to represent the time from exposure to death, thereby allowing the model to be fit to nonhuman primate time-to-death data. The resulting incubation period distribution and the dose dependence of the median incubation period are in good agreement with human data from the 1979 accidental atmospheric anthrax release in Sverdlovsk, Russia, and limited nonhuman primate data. The median incubation period for the Sverdlovsk victims is 9.05 (95% confidence interval = 8.0 - 10.3) days, shorter than previous estimates, and it is predicted to drop to less than 2.5 days at doses above 10 6 spores. The incubation period distribution is important because the left tail determines the time at which clinical diagnosis or syndromic surveillance systems might first detect an anthrax outbreak based on early symptomatic cases, the entire distribution determines the efficacy of medical intervention — which is determined by the speed of the prophylaxis campaign relative to the incubation period — and the right tail of the distribution influences the recommended duration for antibiotic treatment.

Suggested Citation

  • Dean A. Wilkening, 2008. "Modeling the Incubation Period of Inhalational Anthrax," Medical Decision Making, , vol. 28(4), pages 593-605, July.
  • Handle: RePEc:sae:medema:v:28:y:2008:i:4:p:593-605
    DOI: 10.1177/0272989X08315245
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X08315245
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X08315245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damon J A Toth & Adi V Gundlapalli & Wiley A Schell & Kenneth Bulmahn & Thomas E Walton & Christopher W Woods & Catherine Coghill & Frank Gallegos & Matthew H Samore & Frederick R Adler, 2013. "Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans," PLOS Pathogens, Public Library of Science, vol. 9(8), pages 1-18, August.
    2. Bradford W. Gutting & Andrey Rukhin & Ryan S. Mackie & David Marchette & Brandolyn Thran, 2015. "Evaluation of Inhaled Versus Deposited Dose Using the Exponential Dose‐Response Model for Inhalational Anthrax in Nonhuman Primate, Rabbit, and Guinea Pig," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 811-827, May.
    3. Margaret L. Brandeau, 2019. "OR Forum—Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research—The 2016–2017 Philip McCord Morse Lecture," Operations Research, INFORMS, vol. 67(3), pages 700-710, May.
    4. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    5. Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
    6. Judith Legrand & Joseph R Egan & Ian M Hall & Simon Cauchemez & Steve Leach & Neil M Ferguson, 2009. "Estimating the Location and Spatial Extent of a Covert Anthrax Release," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-9, April.
    7. Margaret E. Coleman & Harry M. Marks & Timothy A. Bartrand & Darrell W. Donahue & Stephanie A. Hines & Jason E. Comer & Sarah C. Taft, 2017. "Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 943-957, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:28:y:2008:i:4:p:593-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.