IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v17y1997i1p94-102.html
   My bibliography  Save this article

A Comparison of Parametric and Nonparametric Approaches to ROC Analysis of Quantitative Diagnostic Tests

Author

Listed:
  • Karim O. Hajian-Tilaki
  • James A. Hanley
  • Lawrence Joseph
  • Jean-Paul Collet

Abstract

Receiver operating characteristic (ROC) analysis, which yields indices of accuracy such as the area under the curve (AUC), is increasingly being used to evaluate the performances of diagnostic tests that produce results on continuous scales. Both par ametric and nonparametric ROC approaches are available to assess the discriminant capacity of such tests, but there are no clear guidelines as to the merits of each, particularly with non-binormal data. Investigators may worry that when data are non- Gaussian, estimates of diagnostic accuracy based on a binormal model may be dis torted. The authors conducted a Monte Carlo simulation study to compare the bias and sampling variability in the estimates of the AUCs derived from parametric and nonparametric procedures. Each approach was assessed in data sets generated from various configurations of pairs of overlapping distributions; these included the binormal model and non-binormal pairs of distributions where one or both pair members were mixtures of Gaussian (MG) distributions with different degrees of departures from bi- normality. The biases in the estimates of the AUCs were found to be very small for both parametric and nonparametric procedures. The two approaches yielded very close estimates of the AUCs and of the corresponding sampling variability even when data were generated from non-binormal models. Thus, for a wide range of distributions, concern about bias or imprecision of the estimates of the AUC should not be a major factor in choosing between the nonparametric and parametric approaches. Key words: ROC analysis; quantitative diagnostic test; comparison, parametric; binormal model; LABROC; nonparametric procedure; area under the curve (AUC). (Med Decis Making 1997;17:94-102)

Suggested Citation

  • Karim O. Hajian-Tilaki & James A. Hanley & Lawrence Joseph & Jean-Paul Collet, 1997. "A Comparison of Parametric and Nonparametric Approaches to ROC Analysis of Quantitative Diagnostic Tests," Medical Decision Making, , vol. 17(1), pages 94-102, February.
  • Handle: RePEc:sae:medema:v:17:y:1997:i:1:p:94-102
    DOI: 10.1177/0272989X9701700111
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9701700111
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9701700111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Hua Zhou & Pete Castelluccio & Chuan Zhou, 2004. "Non-Parametric Estimation of ROC Curves in the Absence of a Gold Standard," UW Biostatistics Working Paper Series 1064, Berkeley Electronic Press.
    2. Oke Gerke & Antonia Zapf, 2022. "Convergence Behavior of Optimal Cut-Off Points Derived from Receiver Operating Characteristics Curve Analysis: A Simulation Study," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    3. Pedro N. Rodriguez & Arnulfo Rodriguez, 2006. "Understanding and predicting sovereign debt rescheduling: a comparison of the areas under receiver operating characteristic curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 459-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:17:y:1997:i:1:p:94-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.