IDEAS home Printed from https://ideas.repec.org/a/sae/joudef/v19y2022i3p501-517.html
   My bibliography  Save this article

Transitioning from testbeds to ships: an experience study in deploying the TIPPERS Internet of Things platform to the US Navy

Author

Listed:
  • Dave Archer
  • Michael A August
  • Georgios Bouloukakis
  • Christopher Davison
  • Mamadou H Diallo
  • Dhrubajyoti Ghosh
  • Christopher T Graves
  • Michael Hay
  • Xi He
  • Peeter Laud
  • Steve Lu
  • Ashwin Machanavajjhala
  • Sharad Mehrotra
  • Gerome Miklau
  • Alisa Pankova
  • Shantanu Sharma
  • Nalini Venkatasubramanian
  • Guoxi Wang
  • Roberto Yus

Abstract

This paper describes the collaborative effort between privacy and security researchers at nine different institutions along with researchers at the Naval Information Warfare Center to deploy, test, and demonstrate privacy-preserving technologies in creating sensor-based awareness using the Internet of Things (IoT) aboard naval vessels in the context of the US Navy’s Trident Warrior 2019 exercise. Funded by DARPA through the Brandeis program, the team built an integrated IoT data management middleware, entitled TIPPERS, that supports privacy by design and integrates a variety of Privacy Enhancing Technologies (PETs), including differential privacy, computation on encrypted data, and fine-grained policies. We describe the architecture of TIPPERS and its use in creating a smart ship that offers IoT-enabled services such as occupancy analysis, fall detection, detection of unauthorized access to spaces, and other situational awareness scenarios. We describe the privacy implications of creating IoT spaces that collect data that might include individuals’ data (e.g., location) and analyze the tradeoff between privacy and utility of the supported PETs in this context.

Suggested Citation

  • Dave Archer & Michael A August & Georgios Bouloukakis & Christopher Davison & Mamadou H Diallo & Dhrubajyoti Ghosh & Christopher T Graves & Michael Hay & Xi He & Peeter Laud & Steve Lu & Ashwin Machan, 2022. "Transitioning from testbeds to ships: an experience study in deploying the TIPPERS Internet of Things platform to the US Navy," The Journal of Defense Modeling and Simulation, , vol. 19(3), pages 501-517, July.
  • Handle: RePEc:sae:joudef:v:19:y:2022:i:3:p:501-517
    DOI: 10.1177/1548512920956383
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1548512920956383
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1548512920956383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabio Bagalà & Clemens Becker & Angelo Cappello & Lorenzo Chiari & Kamiar Aminian & Jeffrey M Hausdorff & Wiebren Zijlstra & Jochen Klenk, 2012. "Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Medrano & Raul Igual & Inmaculada Plaza & Manuel Castro, 2014. "Detecting Falls as Novelties in Acceleration Patterns Acquired with Smartphones," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    2. José Carlos Castillo & Davide Carneiro & Juan Serrano-Cuerda & Paulo Novais & Antonio Fernández-Caballero & José Neves, 2014. "A multi-modal approach for activity classification and fall detection," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(4), pages 810-824, April.
    3. Melissa C Kilby & Semyon M Slobounov & Karl M Newell, 2014. "Postural Instability Detection: Aging and the Complexity of Spatial-Temporal Distributional Patterns for Virtually Contacting the Stability Boundary in Human Stance," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    4. Cheng-Wen Lee & Hsiu-Mang Chuang, 2021. "Elderly Fall Detection Devices Using Multiple AIoT Biomedical Sensors," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(6), pages 1-1.
    5. Ionut Anghel & Tudor Cioara & Dorin Moldovan & Marcel Antal & Claudia Daniela Pop & Ioan Salomie & Cristina Bianca Pop & Viorica Rozina Chifu, 2020. "Smart Environments and Social Robots for Age-Friendly Integrated Care Services," IJERPH, MDPI, vol. 17(11), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:19:y:2022:i:3:p:501-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.