Author
Listed:
- Rabeh Ayari
- Imane Hafnaoui
- Alexandra Aguiar
- Patricia Gilbert
- Michel Galibois
- Jean-Pierre Rousseau
- Giovanni Beltrame
- Gabriela Nicolescu
Abstract
Full-mission simulators (FMSs) are considered the most critical simulation tool belonging to the flight simulator family. FMSs include a faithful reproduction of fighter aircraft. They are used by armed forces for design, training, and investigation purposes. Due to the criticality of their timing constraints and the high computation cost of the whole simulation, FMSs need to run in a high-performance computing system. Heterogeneous distributed systems are among the leading computing platforms and can guarantee a significant increase in performance by providing a large number of parallel powerful execution resources. One of the most persistent challenges raised by these platforms is the difficulty of finding an optimal mapping of n tasks on m processing elements. The mapping problem is considered a variant of the quadratic assignment problem, in which an exhaustive search cannot be performed. The mapping problem is an NP-hard problem and solving it requires the use of meta-heuristics, and it becomes more challenging when one has to optimize more than one objective with respect to the timing constraints. Multi-objective evolutionary algorithms have proven their efficiency when tackling this problem. Most of the existent works deal with the task mapping by considering either a single objective or homogeneous architectures. Therefore, the main contribution of this paper is a framework based on the model-driven design paradigm allowing us to map a set of intercommunicating real-time tasks making up the FMS model onto the heterogeneous distributed multi-processor system model. We propose a multi-objective approach based on the well-known optimization algorithm “Non-dominated Sorting Genetic Algorithm-II†satisfying the tight timing constraints of the simulation and minimizing makespan, communication cost, and memory consumption simultaneously.
Suggested Citation
Rabeh Ayari & Imane Hafnaoui & Alexandra Aguiar & Patricia Gilbert & Michel Galibois & Jean-Pierre Rousseau & Giovanni Beltrame & Gabriela Nicolescu, 2018.
"Multi-objective mapping of full-mission simulators on heterogeneous distributed multi-processor systems,"
The Journal of Defense Modeling and Simulation, , vol. 15(4), pages 449-460, October.
Handle:
RePEc:sae:joudef:v:15:y:2018:i:4:p:449-460
DOI: 10.1177/1548512916657907
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:15:y:2018:i:4:p:449-460. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.