Author
Listed:
- Reagan Mozer
(Bentley University)
- Luke Miratrix
(Harvard University Graduate School of Education)
- Jackie Eunjung Relyea
(North Carolina State University)
- James S. Kim
(Harvard University Graduate School of Education)
Abstract
In a randomized trial that collects text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by human raters. An impact analysis can then be conducted to compare treatment and control groups, using the hand-coded scores as a measured outcome. This process is both time and labor-intensive, which creates a persistent barrier for large-scale assessments of text. Furthermore, enriching one’s understanding of a found impact on text outcomes via secondary analyses can be difficult without additional scoring efforts. The purpose of this article is to provide a pipeline for using machine-based text analytic and data mining tools to augment traditional text-based impact analysis by analyzing impacts across an array of automatically generated text features. In this way, we can explore what an overall impact signifies in terms of how the text has evolved due to treatment. Through a case study based on a recent field trial in education, we show that machine learning can indeed enrich experimental evaluations of text by providing a more comprehensive and fine-grained picture of the mechanisms that lead to stronger argumentative writing in a first- and second-grade content literacy intervention. Relying exclusively on human scoring, by contrast, is a lost opportunity. Overall, the workflow and analytical strategy we describe can serve as a template for researchers interested in performing their own experimental evaluations of text.
Suggested Citation
Reagan Mozer & Luke Miratrix & Jackie Eunjung Relyea & James S. Kim, 2024.
"Combining Human and Automated Scoring Methods in Experimental Assessments of Writing: A Case Study Tutorial,"
Journal of Educational and Behavioral Statistics, , vol. 49(5), pages 780-816, October.
Handle:
RePEc:sae:jedbes:v:49:y:2024:i:5:p:780-816
DOI: 10.3102/10769986231207886
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:49:y:2024:i:5:p:780-816. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.