IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v44y2019i4p367-389.html
   My bibliography  Save this article

The Causal Structure of Suppressor Variables

Author

Listed:
  • Yongnam Kim

    (Department of Educational Psychology, University of Wisconsin-Madison
    Center for Demography and Ecology, University of Wisconsin-Madison)

Abstract

Suppression effects in multiple linear regression are one of the most elusive phenomena in the educational and psychological measurement literature. The question is, How can including a variable, which is completely unrelated to the criterion variable, in regression models significantly increase the predictive power of the regression models? In this article, we view suppression from a causal perspective and uncover the causal structure of suppressor variables. Using causal discovery algorithms, we show that classical suppressors defined by Horst (1941) are generated from causal structures which reveal the equivalence between suppressors and instrumental variables. Although the educational and psychological measurement literature has long recommended that researchers include suppressors in regression models, the causal inference literature has recently recommended that researchers exclude instrumental variables. The conflicting views between the two disciplines can be resolved by considering the different purposes of statistical models, prediction and causal explanation.

Suggested Citation

  • Yongnam Kim, 2019. "The Causal Structure of Suppressor Variables," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 367-389, August.
  • Handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:367-389
    DOI: 10.3102/1076998619825679
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998619825679
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998619825679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Middleton, Joel A. & Scott, Marc A. & Diakow, Ronli & Hill, Jennifer L., 2016. "Bias Amplification and Bias Unmasking," Political Analysis, Cambridge University Press, vol. 24(3), pages 307-323, July.
    2. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    3. Lynn H.S., 2003. "Suppression and Confounding in Action," The American Statistician, American Statistical Association, vol. 57, pages 58-61, February.
    4. Tyler J. VanderWeele & Ilya Shpitser, 2011. "A New Criterion for Confounder Selection," Biometrics, The International Biometric Society, vol. 67(4), pages 1406-1413, December.
    5. Xavier De Luna & Ingeborg Waernbaum & Thomas S. Richardson, 2011. "Covariate selection for the nonparametric estimation of an average treatment effect," Biometrika, Biometrika Trust, vol. 98(4), pages 861-875.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holger Steinmetz & Jörn Block, 2022. "Meta-analytic structural equation modeling (MASEM): new tricks of the trade," Management Review Quarterly, Springer, vol. 72(3), pages 605-626, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Meiling & Su, Pingfan & Hu, Liyuan & Szabo, Zoltan & Zhao, Qianyu & Shi, Chengchun, 2024. "Forward and backward state abstractions for off-policy evaluation," LSE Research Online Documents on Economics 124074, London School of Economics and Political Science, LSE Library.
    2. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    3. Thomas S. Richardson & James M. Robins & Linbo Wang, 2018. "Discussion of “Data†driven confounder selection via Markov and Bayesian networks†by Häggström," Biometrics, The International Biometric Society, vol. 74(2), pages 403-406, June.
    4. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
    5. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    6. Leonard Henckel & Emilija Perković & Marloes H. Maathuis, 2022. "Graphical criteria for efficient total effect estimation via adjustment in causal linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 579-599, April.
    7. David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
    8. Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
    9. Brandon Koch & David M. Vock & Julian Wolfson, 2018. "Covariate selection with group lasso and doubly robust estimation of causal effects," Biometrics, The International Biometric Society, vol. 74(1), pages 8-17, March.
    10. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    11. Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
    12. Edward H. Kennedy & Sivaraman Balakrishnan, 2018. "Discussion of “Data†driven confounder selection via Markov and Bayesian networks†by Jenny Häggström," Biometrics, The International Biometric Society, vol. 74(2), pages 399-402, June.
    13. Jenny Häggström, 2018. "Data†driven confounder selection via Markov and Bayesian networks," Biometrics, The International Biometric Society, vol. 74(2), pages 389-398, June.
    14. Matthew Cefalu & Francesca Dominici & Nils Arvold & Giovanni Parmigiani, 2017. "Model averaged double robust estimation," Biometrics, The International Biometric Society, vol. 73(2), pages 410-421, June.
    15. Li, Li & Shi, Pengfei & Fan, Qingliang & Zhong, Wei, 2024. "Causal effect estimation with censored outcome and covariate selection," Statistics & Probability Letters, Elsevier, vol. 204(C).
    16. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    17. Uehleke, Reinhard & Petrick, Martin & Hüttel, Silke, 2022. "Evaluations of agri-environmental schemes based on observational farm data: The importance of covariate selection," Land Use Policy, Elsevier, vol. 114(C).
    18. Stenberg, Anders & Westerlund, Olle, 2016. "Flexibility at a cost – Should governments stimulate tertiary education for adults?," The Journal of the Economics of Ageing, Elsevier, vol. 7(C), pages 69-86.
    19. Lefebvre, Geneviève & Atherton, Juli & Talbot, Denis, 2014. "The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 227-240.
    20. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:367-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.