IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v35y2010i2p174-193.html
   My bibliography  Save this article

Stochastic Approximation Methods for Latent Regression Item Response Models

Author

Listed:
  • Matthias von Davier
  • Sandip Sinharay

Abstract

This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates serving as predictors of the conditional distribution of ability. Applications to estimating latent regression models for National Assessment of Educational Progress (NAEP) data from the 2000 Grade 4 mathematics assessment and the Grade 8 reading assessment from 2002 are presented and results of the proposed method are compared to results obtained using current operational procedures.

Suggested Citation

  • Matthias von Davier & Sandip Sinharay, 2010. "Stochastic Approximation Methods for Latent Regression Item Response Models," Journal of Educational and Behavioral Statistics, , vol. 35(2), pages 174-193, April.
  • Handle: RePEc:sae:jedbes:v:35:y:2010:i:2:p:174-193
    DOI: 10.3102/1076998609346970
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998609346970
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998609346970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neal Thomas, 2002. "The role of secondary covariates when estimating latent trait population distributions," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 33-48, March.
    2. Ming Gao Gu & Hong‐Tu Zhu, 2001. "Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 339-355.
    3. Robert Mislevy, 1984. "Estimating latent distributions," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 359-381, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norman Rose & Matthias Davier & Benjamin Nagengast, 2017. "Modeling Omitted and Not-Reached Items in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 795-819, September.
    2. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Oranje & Andrew Kolstad, 2019. "Research on Psychometric Modeling, Analysis, and Reporting of the National Assessment of Educational Progress," Journal of Educational and Behavioral Statistics, , vol. 44(6), pages 648-670, December.
    2. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    3. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    4. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    5. Hiroyuki Kasahara & Katsumi Shimotsu, 2014. "Non-parametric identification and estimation of the number of components in multivariate mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 97-111, January.
    6. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    7. P. Bentler, 1986. "Structural modeling and psychometrika: An historical perspective on growth and achievements," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 35-51, March.
    8. Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
    9. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    10. Qian, Zhiguang & Shapiro, Alexander, 2006. "Simulation-based approach to estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1243-1259, November.
    11. Koutchadé, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modelling of production decisions of heterogeneous farmers with mixed models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205098, Agricultural and Applied Economics Association.
    12. Koutchade, Philippe & Carpentier, Alain & Femenia, Fabienne, 2015. "Accounting for unobserved heterogeneity in micro-econometric agricultural production models: a random parameter approach," 2015 Conference, August 9-14, 2015, Milan, Italy 212015, International Association of Agricultural Economists.
    13. J. Ramsay, 1989. "A comparison of three simple test theory models," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 487-499, September.
    14. Norman Rose & Matthias Davier & Benjamin Nagengast, 2017. "Modeling Omitted and Not-Reached Items in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 795-819, September.
    15. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    16. Dean Follmann, 1988. "Consistent estimation in the rasch model based on nonparametric margins," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 553-562, December.
    17. Haruhiko Ogasawara, 2009. "Asymptotic cumulants of the parameter estimators in item response theory," Computational Statistics, Springer, vol. 24(2), pages 313-331, May.
    18. Ping Chen & Chun Wang, 2021. "Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 299-326, March.
    19. Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
    20. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:35:y:2010:i:2:p:174-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.