IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v22y1997i1p47-76.html
   My bibliography  Save this article

Multilevel Item Response Models: An Approach to Errors in Variables Regression

Author

Listed:
  • Raymond J. Adams
  • Mark Wilson
  • Margaret Wu

Abstract

In this article we show how certain analytic problems that arise when one attempts to use latent variables as outcomes in regression analyses can be addressed by taking a multilevel perspective on item response modeling. Under a multilevel, or hierarchical, perspective we cast the item response model as a within-student model and the student population distribution as a between-student model. Taking this perspective leads naturally to an extension of the student population model to include a range of student-level variables, and it invites the possibility of further extending the models to additional levels so that multilevel models can be applied with latent outcome variables. In the two-level case, the model that we employ is formally equivalent to the plausible value procedures that are used as part of the National Assessment of Educational Progress (NAEP), but we present the method for a different class of measurement models, and we use a simultaneous estimation method rather than two-step estimation. In our application of the models to the appropriate treatment of measurement error in the dependent variable of a between-student regression, we also illustrate the adequacy of some approximate procedures that are used in NAEP.

Suggested Citation

  • Raymond J. Adams & Mark Wilson & Margaret Wu, 1997. "Multilevel Item Response Models: An Approach to Errors in Variables Regression," Journal of Educational and Behavioral Statistics, , vol. 22(1), pages 47-76, March.
  • Handle: RePEc:sae:jedbes:v:22:y:1997:i:1:p:47-76
    DOI: 10.3102/10769986022001047
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986022001047
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986022001047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
    2. Norman Rose & Matthias Davier & Benjamin Nagengast, 2017. "Modeling Omitted and Not-Reached Items in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 795-819, September.
    3. E. Andrés Houseman & Carmen Marsit & Margaret Karagas & Louise M. Ryan, 2007. "Penalized Item Response Theory Models: Application to Epigenetic Alterations in Bladder Cancer," Biometrics, The International Biometric Society, vol. 63(4), pages 1269-1277, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:22:y:1997:i:1:p:47-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.