IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v21y1996i3p215-229.html
   My bibliography  Save this article

Estimating the Concomitant-Variable Latent-Class Model With the EM Algorithm

Author

Listed:
  • Peter G. M. van der Heijden
  • Jos Dessens
  • UIf Bockenholt

Abstract

Latent class analysis assumes the existence of a categorical latent variable that explains the relations between a set of categorical manifest variables. Simultaneous latent class analysis deals with sets of multiway contingency tables simultaneously. In this way an explanatory categorical grouping variable is related to latent class results. In this article we discuss a tool called the concomitant-variable latent-class model, which generalizes this work to continuous explanatory variables. An EM estimation procedure to estimate the model is worked out in detail, and the model is applied to an example on juvenile delinquency.

Suggested Citation

  • Peter G. M. van der Heijden & Jos Dessens & UIf Bockenholt, 1996. "Estimating the Concomitant-Variable Latent-Class Model With the EM Algorithm," Journal of Educational and Behavioral Statistics, , vol. 21(3), pages 215-229, September.
  • Handle: RePEc:sae:jedbes:v:21:y:1996:i:3:p:215-229
    DOI: 10.3102/10769986021003215
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986021003215
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986021003215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Centoni & Vieri Del Panta & Antonello Maruotti & Valentina Raponi, 2019. "Concomitant-Variable Latent-Class Beta Inflated Models to Assess Students’ Performance: An Italian Case Study," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 7-18, November.
    2. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:21:y:1996:i:3:p:215-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.