IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v13y1988i3p243-271.html
   My bibliography  Save this article

Item Parameter Estimation Via Marginal Maximum Likelihood and an EM Algorithm: A Didactic

Author

Listed:
  • Michael R. Harwell
  • Frank B. Baker
  • Michael Zwarts

Abstract

The Bock and Aitkin (1981) Marginal Maximum Likelihood/EM approach to item parameter estimation is an alternative to the classical joint maximum likelihood procedure of item response theory. Unfortunately , the complexity of the underlying mathematics and the terse nature of the existing literature has made understanding of the approach difficult. To make the approach accessible to a wider audience, the present didactic paper provides the essential mathematical details of a marginal maximum likelihood/EM solution and shows how it can be used to obtain consistent item parameter estimates. For pedagogical purposes, a short BASIC computer program is used to illustrate the underlying simplicity of the method.

Suggested Citation

  • Michael R. Harwell & Frank B. Baker & Michael Zwarts, 1988. "Item Parameter Estimation Via Marginal Maximum Likelihood and an EM Algorithm: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 13(3), pages 243-271, September.
  • Handle: RePEc:sae:jedbes:v:13:y:1988:i:3:p:243-271
    DOI: 10.3102/10769986013003243
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986013003243
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986013003243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norman Rose & Matthias Davier & Benjamin Nagengast, 2017. "Modeling Omitted and Not-Reached Items in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 795-819, September.
    2. Alexander Weissman, 2013. "Optimizing information using the EM algorithm in item response theory," Annals of Operations Research, Springer, vol. 206(1), pages 627-646, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:13:y:1988:i:3:p:243-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.