Author
Abstract
Automatic recognition of personal comfort is critical in realizing autonomous control of building utilities. We can infer human comfort level based on indoor environmental conditions, such as temperature and humidity, collected through sensor networks. However, the majority of methods for optimally deploying sensor networks in indoor climate monitoring mainly focused on achieving accurate measurements such as temperature distribution map with the minimum cost. Indeed, for automatic recognition of comfort using machine learning, we need to collect datasets preserving as much of the discriminatory information for inferring personal comfort with the minimum cost. In this paper, we present a novel method of placing and minimizing sensor nodes for sensor networks in smart energy systems. We have developed ZigBee-based sensor nodes and collected temperature, humidity, and illumination dataset from 13 nodes for a week. Using the dataset, we group the sensor nodes into coherent clusters, and then select a representative node which has the maximum value of RSSI for each cluster and remove the other redundant sensors, reducing the number of sensor nodes deployed. To show the feasibility of the proposed method, we perform a classification analysis of building environment. The recognition accuracy decreased by 13 percent with 6 selected sensor nodes, compared to the result with all 13 sensor nodes.
Suggested Citation
Jaeseok Yun & Jaeho Kim, 2013.
"Deployment Support for Sensor Networks in Indoor Climate Monitoring,"
International Journal of Distributed Sensor Networks, , vol. 9(9), pages 875802-8758, September.
Handle:
RePEc:sae:intdis:v:9:y:2013:i:9:p:875802
DOI: 10.1155/2013/875802
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:9:p:875802. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.