IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v9y2013i9p198283.html
   My bibliography  Save this article

Delay-Driven Routing for Low-Duty-Cycle Sensor Networks

Author

Listed:
  • Zuzhi Fan

Abstract

Duty-cycled operation has been introduced as an efficient way to preserve nodes energy and prolong network lifetime for wireless sensor networks. However, such networks are often logically disconnected since there is a limited number of active nodes within a period of time. Traditional routing algorithms, which have been designed for always-awake wireless networks, suffer excessive waiting time incurred by asynchronous schedule of nodes and cannot be applied to these time-dependent sensor networks. In this work, we study the optimization of delivery delay for low-duty-cycle sensor networks. Specially, we theoretically analyze the sleep latency in low-duty-cycle networks and present a new routing metric, which takes both lossy link and asynchronous schedule of nodes into consideration. Based on the metric, we propose delay-driven routing algorithms to find optimal forwarder in order to reduce delivery delay for source-to-sink communication. We compare our design against state-of-the-art routing algorithms derived in wireless networks through large-scale simulations and testbed experiments, which show that our algorithms can achieve a significant reduction in delivery delay.

Suggested Citation

  • Zuzhi Fan, 2013. "Delay-Driven Routing for Low-Duty-Cycle Sensor Networks," International Journal of Distributed Sensor Networks, , vol. 9(9), pages 198283-1982, September.
  • Handle: RePEc:sae:intdis:v:9:y:2013:i:9:p:198283
    DOI: 10.1155/2013/198283
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2013/198283
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/198283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:9:p:198283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.