Author
Listed:
- Orhan Dagdeviren
- Vahid Khalilpour Akram
Abstract
A bridge is a critical edge whose fault disables the data delivery of a WSN component. Because of this, it is important to detect bridges and take preventions before they are corrupted. Since WSNs are battery powered, protocols running on WSN should be energy efficient. In this paper, we propose two distributed energy-efficient bridge detection algorithms for WSNs. The first algorithm is the improved version of Pritchard's algorithm where two phases are merged into a single phase and radio broadcast communication is used instead of unicast in order to remove a downcast operation and remove extra message headers. The second algorithm runs proposed rules on 2-hop neighborhoods of each node and tries to detect all bridges in a breadth-first search (BFS) execution session using O( N ) messages with O ( Δ ( log 2 ( N ) ) ) bits where N is the node count and Δ is the maximum node degree. Since BFS is a natural routing algorithm for WSNs, the second algorithm achieves both routing and bridge detections. If the second proposed algorithm is not able to to classify all edges within the BFS phase, improved version of Turau's algorithm is executed as the second phase. We show the operation of the algorithms, analyze them, and provide extensive simulation results on TOSSIM environment. We compare our proposed algorithms with the other bridge detection algorithms and show that our proposed algorithms provide less resource consumption. The energy saving of our algorithms is up to 4.3 times, while it takes less time in most of the situations.
Suggested Citation
Orhan Dagdeviren & Vahid Khalilpour Akram, 2013.
"Energy-Efficient Bridge Detection Algorithms for Wireless Sensor Networks,"
International Journal of Distributed Sensor Networks, , vol. 9(4), pages 867903-8679, April.
Handle:
RePEc:sae:intdis:v:9:y:2013:i:4:p:867903
DOI: 10.1155/2013/867903
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:4:p:867903. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.