Author
Listed:
- Haiyan Shi
- Wanliang Wang
- Ngai Ming Kwok
- Shengyong Chen
Abstract
Energy depletion in wireless sensors is a major obstacle for a wireless sensor network (WSN) to operate over an extended period of time. This problem can be extenuated by minimizing the need for high-power transmission from sensors to the master processor. Sensors could be arranged in clusters, and their sensing workloads are properly determined for minimal energy consumption during the sensing and result reporting stages. The divisible load theory (DLT) is applied here to obtain optimal allocation of sensor workloads taking into account the balance of energy used such that the failure of the first sensor can be delayed. Since standard DLT assumes an ordered indexing of the sensors, its direct application in WSNs may result in unbalanced energy usage. Adaptive indexing schemes with the application of DLT, adaptive indexed divisible load theory (AIDLT), are thus proposed to redefine the indices of sensors in each sensing round while calculating the assigned workload portions. Furthermore, adaptations based on transmission distances, sensor residual energies, double ranking of distances with residual energies, and randomized sensor identifications are formulated and evaluated. Simulation results on a cluster of sensors have shown that adaptation based on residual energies outperforms the other indexing schemes while the randomization scheme is the simplest.
Suggested Citation
Haiyan Shi & Wanliang Wang & Ngai Ming Kwok & Shengyong Chen, 2013.
"Adaptive Indexed Divisible Load Theory for Wireless Sensor Network Workload Allocation,"
International Journal of Distributed Sensor Networks, , vol. 9(3), pages 484796-4847, March.
Handle:
RePEc:sae:intdis:v:9:y:2013:i:3:p:484796
DOI: 10.1155/2013/484796
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:3:p:484796. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.