Author
Listed:
- Jianhong Zhang
- Liying Liu
- Yuanbo Cui
- Zhipeng Chen
Abstract
Smart grid is a network of computers and power infrastructures that monitor and control energy usage by collecting data from the power grid. It can gather and distribute information about the behavior of all consumers in order to improve the efficiency, reliability, economics, safety, and sustainability of electricity services. In this paper, we propose a self-certified PKC-based privacy-preserving data aggregation scheme in smart grid to increase computation efficiency and achieve privacy protection of end users. To realize the anonymous aggregation of multidimensional data, we adopt the Chinese Remainder Theorem and homomorphic property of Paillier cryptosystem to achieve it. Comparing our scheme with Lu et al.'s scheme, the result shows that our scheme has more advantages over Lu et al.'s scheme in terms of computational costs of the user, GW, and OA. After adopting batch verification technique, the computational cost of GW is constant in our scheme, however, that of GW is linear with the number of the users in Lu et al.'s scheme. Furthermore, our scheme also supports the anonymity of the user's identity. It indicates that the local gateway GW does not know the real identity of the resident user such that the privacy of the user is better protected.
Suggested Citation
Jianhong Zhang & Liying Liu & Yuanbo Cui & Zhipeng Chen, 2013.
"SP2DAS: Self-certified PKC-Based Privacy-Preserving Data Aggregation Scheme in Smart Grid,"
International Journal of Distributed Sensor Networks, , vol. 9(1), pages 457325-4573, January.
Handle:
RePEc:sae:intdis:v:9:y:2013:i:1:p:457325
DOI: 10.1155/2013/457325
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:1:p:457325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.