Author
Listed:
- Jun Wu
- Song Liu
- Zhenyu Zhou
- Ming Zhan
Abstract
The intrusion prediction for wireless sensor networks (WSNs) is an unresolved problem. Hence, the current intrusion detection schemes cannot provide enough security for WSNs, which poses a number of security challenges in WSNs. In many mission-critical applications, such as battle field, even though the intrusion detection systems (IDSs) without prediction capability could detect the malicious activities afterwards, the damages to the WSNs have been generated and could hardly be restored. In addition, sensor nodes usually are resource constrained, which limits the direct adoption of expensive intrusion prediction algorithm. To address the above challenges, we propose an intelligent intrusion prediction scheme that is able to enforce accurate intrusion prediction. The proposed scheme exploits a novel three-layer brain-like hierarchical learning framework, tailors, and adapts it for WSNs with both performance and security requirements. The implementation system of the proposed scheme is designed based on agent technology. Moreover, an attack experiment is done for getting training and test data set. Experiment results show that the proposed scheme has several advantages in terms of efficiency of implementation and high prediction rate. To our best knowledge, this paper is the first to realize intrusion prediction for WSNs.
Suggested Citation
Jun Wu & Song Liu & Zhenyu Zhou & Ming Zhan, 2012.
"Toward Intelligent Intrusion Prediction for Wireless Sensor Networks Using Three-Layer Brain-Like Learning,"
International Journal of Distributed Sensor Networks, , vol. 8(10), pages 243841-2438, October.
Handle:
RePEc:sae:intdis:v:8:y:2012:i:10:p:243841
DOI: 10.1155/2012/243841
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:8:y:2012:i:10:p:243841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.