IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v18y2022i3p15501329221080417.html
   My bibliography  Save this article

Exploring the vulnerability in the inference phase of advanced persistent threats

Author

Listed:
  • Qi Wu
  • Qiang Li
  • Dong Guo
  • Xiangyu Meng

Abstract

In recent years, the Internet of Things has been widely used in modern life. Advanced persistent threats are long-term network attacks on specific targets with attackers using advanced attack methods. The Internet of Things targets have also been threatened by advanced persistent threats with the widespread application of Internet of Things. The Internet of Things device such as sensors is weaker than host in security. In the field of advanced persistent threat detection, most works used machine learning methods whether host-based detection or network-based detection. However, models using machine learning methods lack robustness because it can be attacked easily by adversarial examples. In this article, we summarize the characteristics of advanced persistent threats traffic and propose the algorithm to make adversarial examples for the advanced persistent threat detection model. We first train advanced persistent threat detection models using different machine learning methods, among which the highest F1-score is 0.9791. Then, we use the algorithm proposed to grey-box attack one of models and the detection success rate of the model drop from 98.52% to 1.47%. We prove that advanced persistent threats adversarial examples are transitive and we successfully black-box attack other models according to this. The detection success rate of the attacked model with the best attacked effect dropped from 98.66% to 0.13%.

Suggested Citation

  • Qi Wu & Qiang Li & Dong Guo & Xiangyu Meng, 2022. "Exploring the vulnerability in the inference phase of advanced persistent threats," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
  • Handle: RePEc:sae:intdis:v:18:y:2022:i:3:p:15501329221080417
    DOI: 10.1177/15501329221080417
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501329221080417
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501329221080417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andronicus A. Akinyelu & Aderemi O. Adewumi, 2014. "Classification of Phishing Email Using Random Forest Machine Learning Technique," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    2. Zhengyang Fan & Wanru Li & Kathryn Blackmond Laskey & Kuo-Chu Chang, 2024. "Investigation of Phishing Susceptibility with Explainable Artificial Intelligence," Future Internet, MDPI, vol. 16(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:18:y:2022:i:3:p:15501329221080417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.