IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i7p15501477211035332.html
   My bibliography  Save this article

ScalEdge: A framework for scalable edge computing in Internet of things–based smart systems

Author

Listed:
  • Mohammad Babar
  • Muhammad Sohail Khan

Abstract

Edge computing brings down storage, computation, and communication services from the cloud server to the network edge, resulting in low latency and high availability. The Internet of things (IoT) devices are resource-constrained, unable to process compute-intensive tasks. The convergence of edge computing and IoT with computation offloading offers a feasible solution in terms of performance. Besides these, computation offload saves energy, reduces computation time, and extends the battery life of resource constrain IoT devices. However, edge computing faces the scalability problem, when IoT devices in large numbers approach edge for computation offloading requests. This research article presents a three-tier energy-efficient framework to address the scalability issue in edge computing. We introduced an energy-efficient recursive clustering technique at the IoT layer that prioritizes the tasks based on weight. Each selected task with the highest weight value offloads to the edge server for execution. A lightweight client–server architecture affirms to reduce the computation offloading overhead. The proposed energy-efficient framework for IoT algorithm makes efficient computation offload decisions while considering energy and latency constraints. The energy-efficient framework minimizes the energy consumption of IoT devices, decreases computation time and computation overhead, and scales the edge server. Numerical results show that the proposed framework satisfies the quality of service requirements of both delay-sensitive and delay-tolerant applications by minimizing energy and increasing the lifetime of devices.

Suggested Citation

  • Mohammad Babar & Muhammad Sohail Khan, 2021. "ScalEdge: A framework for scalable edge computing in Internet of things–based smart systems," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:7:p:15501477211035332
    DOI: 10.1177/15501477211035332
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211035332
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211035332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Babar & Muhammad Sohail Khan & Ahmad Din & Farman Ali & Usman Habib & Kyung Sup Kwak & Ning Cai, 2021. "Intelligent Computation Offloading for IoT Applications in Scalable Edge Computing Using Artificial Bee Colony Optimization," Complexity, Hindawi, vol. 2021, pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:7:p:15501477211035332. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.