IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i12p15501477211059097.html
   My bibliography  Save this article

Physical layer security in cognitive NOMA sensor networks with full-duplex technique

Author

Listed:
  • Zhihui Shang
  • Tao Zhang
  • Liwei Tao
  • Zhongwu Xiang
  • Weiwei Yang

Abstract

This article studies the physical layer security in a downlink full-duplex cognitive non-orthogonal multiple access sensor networks (FD-C-NOMA). Compared with the existing works, this article proposes a FD-C-NOMA transmission scheme with a primary user (PU) and secondary user (SU) sensor nodes in the presence of an eavesdropper. The zero-forcing beamforming design problems of FD operation are investigated subject to the practical secrecy rate and the quality of services of PU. To characterize the security reliability trade-off of the FD-C-NOMA scheme, we first derive the closed-form expressions of connection outage probability (COP), the secrecy outage probability (SOP), and effective secrecy throughput (EST) of each SU in the NOMA networks. Then the impacts of the system parameters on the COP, SOP, and EST are investigated to evaluate the security and reliability in the FD-C-NOMA networks. Furthermore, in order to further verify the security and reliability of our considered network, an OMA scheme of FD operation is provided in the simulation for the purpose of comparison. Results demonstrate that the NOMA-based cognitive sensor networks of FD operation outperforms the OMA system in terms of EST. Finally, simulations are performed to validate the accuracy of our analysis results of the proposed scheme.

Suggested Citation

  • Zhihui Shang & Tao Zhang & Liwei Tao & Zhongwu Xiang & Weiwei Yang, 2021. "Physical layer security in cognitive NOMA sensor networks with full-duplex technique," International Journal of Distributed Sensor Networks, , vol. 17(12), pages 15501477211, December.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211059097
    DOI: 10.1177/15501477211059097
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211059097
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211059097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211059097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.