IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v17y2021i10p15501477211050729.html
   My bibliography  Save this article

Review and classification of trajectory summarisation algorithms: From compression to segmentation

Author

Listed:
  • Daniel Amigo
  • David Sánchez Pedroche
  • Jesús García
  • José Manuel Molina

Abstract

With the continuous development and cost reduction of positioning and tracking technologies, a large amount of trajectories are being exploited in multiple domains for knowledge extraction. A trajectory is formed by a large number of measurements, where many of them are unnecessary to describe the actual trajectory of the vehicle, or even harmful due to sensor noise. This not only consumes large amounts of memory, but also makes the extracting knowledge process more difficult. Trajectory summarisation techniques can solve this problem, generating a smaller and more manageable representation and even semantic segments. In this comprehensive review, we explain and classify techniques for the summarisation of trajectories according to their search strategy and point evaluation criteria, describing connections with the line simplification problem. We also explain several special concepts in trajectory summarisation problem. Finally, we outline the recent trends and best practices to continue the research in next summarisation algorithms.

Suggested Citation

  • Daniel Amigo & David Sánchez Pedroche & Jesús García & José Manuel Molina, 2021. "Review and classification of trajectory summarisation algorithms: From compression to segmentation," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.
  • Handle: RePEc:sae:intdis:v:17:y:2021:i:10:p:15501477211050729
    DOI: 10.1177/15501477211050729
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/15501477211050729
    Download Restriction: no

    File URL: https://libkey.io/10.1177/15501477211050729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Penghui Sun & Shixiong Xia & Guan Yuan & Daxing Li, 2016. "An Overview of Moving Object Trajectory Compression Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongqiu Wang & Guan Yuan & Haoran Pei & Yanmei Zhang & Xiao Liu, 2020. "Unsupervised learning trajectory anomaly detection algorithm based on deep representation," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
    2. Guan Yuan & Zhongqiu Wang & Zhixiao Wang & Fukai Zhang & Li Yuan & Jian Zhang, 2019. "APDS: A framework for discovering movement pattern from trajectory database," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:17:y:2021:i:10:p:15501477211050729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.