IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i8p1550147720949142.html
   My bibliography  Save this article

A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing

Author

Listed:
  • Muhammad Sardaraz
  • Muhammad Tahir

Abstract

Recent developments in cloud computing have made it a powerful solution for executing large-scale scientific problems. The complexity of scientific workflows demands efficient utilization of cloud resources to satisfy user requirements. Scheduling of scientific workflows in a cloud environment is a challenge for researchers. The problem is considered as NP-hard. Some constraints such as a heterogeneous environment, dependencies between tasks, quality of service and user deadlines make it difficult for the scheduler to fully utilize available resources. The problem has been extensively studied in the literature. Different researchers have targeted different parameters. This article presents a multi-objective scheduling algorithm for scheduling scientific workflows in cloud computing. The solution is based on genetic algorithm that targets makespan, monetary cost, and load balance. The proposed algorithm first finds the best solution for each parameter. Based on these solutions, the algorithm finds the superbest solution for all parameters. The proposed algorithm is evaluated with benchmark datasets and comparative results with the standard genetic algorithm, particle swarm optimization, and specialized scheduler are presented. The results show that the proposed algorithm achieves an improvement in makespan and reduces the cost with a well load balanced system.

Suggested Citation

  • Muhammad Sardaraz & Muhammad Tahir, 2020. "A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing," International Journal of Distributed Sensor Networks, , vol. 16(8), pages 15501477209, August.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:8:p:1550147720949142
    DOI: 10.1177/1550147720949142
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720949142
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720949142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianguo Zheng & Yilin Wang, 2021. "A Hybrid Multi-Objective Bat Algorithm for Solving Cloud Computing Resource Scheduling Problems," Sustainability, MDPI, vol. 13(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:8:p:1550147720949142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.