IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720934738.html
   My bibliography  Save this article

Convolutional neural network–based person tracking using overhead views

Author

Listed:
  • Misbah Ahmad
  • Imran Ahmed
  • Fakhri Alam Khan
  • Fawad Qayum
  • Hanan Aljuaid

Abstract

In video surveillance, person tracking is considered as challenging task. Numerous computer vision, machine and deep learning–based techniques have been developed in recent years. Majority of these techniques are based on frontal view images/video sequences. The advancement of convolutional neural network reforms the way of object tracking. The network layers of convolutional neural network models trained on a number of images or video sequences improve speed and accuracy of object tracking. In this work, the generalization performance of existing pre-trained deep learning models have investigated for overhead view person detection and tracking, under different experimental conditions. The object tracking method Generic Object Tracking Using Regression Networks (GOTURN) which has been yielding outstanding tracking results in recent years is explored for person tracking using overhead views. This work mainly focused on overhead view person tracking using Faster region convolutional neural network (Faster-RCNN) in combination with GOTURN architecture. In this way, the person is first identified in overhead view video sequences and then tracked using a GOTURN tracking algorithm. Faster-RCNN detection model achieved the true detection rate ranging from 90% to 93% with a minimum false detection rate up to 0.5%. The GOTURN tracking algorithm achieved similar results with the success rate ranging from 90% to 94%. Finally, the discussion is made on output results along with future direction.

Suggested Citation

  • Misbah Ahmad & Imran Ahmed & Fakhri Alam Khan & Fawad Qayum & Hanan Aljuaid, 2020. "Convolutional neural network–based person tracking using overhead views," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720934738
    DOI: 10.1177/1550147720934738
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720934738
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720934738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Ahmad & Stanislav Protasov & Adil Mehmood Khan & Rasheed Hussain & Asad Masood Khattak & Wajahat Ali Khan, 2018. "Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tien, Paige Wenbin & Wei, Shuangyu & Calautit, John Kaiser & Darkwa, Jo & Wood, Christopher, 2022. "Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720934738. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.