IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i6p1550147720932749.html
   My bibliography  Save this article

A novel pigeon-inspired optimization with QUasi-Affine TRansformation evolutionary algorithm for DV-Hop in wireless sensor networks

Author

Listed:
  • Xiao-Xue Sun
  • Jeng-Shyang Pan
  • Shu-Chuan Chu
  • Pei Hu
  • Ai-Qing Tian

Abstract

In modern times, swarm intelligence has played an increasingly important role in finding an optimal solution within a search range. This study comes up with a novel solution algorithm named QUasi-Affine TRansformation-Pigeon-Inspired Optimization Algorithm, which uses an evolutionary matrix in QUasi-Affine TRansformation Evolutionary Algorithm for the Pigeon-Inspired Optimization Algorithm that was designed using the homing behavior of pigeon. We abstract the pigeons into particles of no quality and improve the learning strategy of the particles. Having different update strategies, the particles get more scientific movement and space exploration on account of adopting the matrix of the QUasi-Affine TRansformation Evolutionary algorithm. It increases the versatility of the Pigeon-Inspired Optimization algorithm and makes the Pigeon-Inspired Optimization less simple. This new algorithm effectively improves the shortcoming that is liable to fall into local optimum. Under a number of benchmark functions, our algorithm exhibits good optimization performance. In wireless sensor networks, there are still some problems that need to be optimized, for example, the error of node positioning can be further reduced. Hence, we attempt to apply the proposed optimization algorithm in terms of positioning, that is, integrating the QUasi-Affine TRansformation-Pigeon-Inspired Optimization algorithm into the Distance Vector–Hop algorithm. Simultaneously, the algorithm verifies its optimization ability by node location. According to the experimental results, they demonstrate that it is more outstanding than the Pigeon-Inspired Optimization algorithm, the QUasi-Affine TRansformation Evolutionary algorithm, and particle swarm optimization algorithm. Furthermore, this algorithm shows up minor errors and embodies a much more accurate location.

Suggested Citation

  • Xiao-Xue Sun & Jeng-Shyang Pan & Shu-Chuan Chu & Pei Hu & Ai-Qing Tian, 2020. "A novel pigeon-inspired optimization with QUasi-Affine TRansformation evolutionary algorithm for DV-Hop in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720932749
    DOI: 10.1177/1550147720932749
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720932749
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720932749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Hua Chen & Kuo-Ming Chao & Feng-Jang Hwang & Chunjia Han & Lianrong Pu, 2021. "Editorial," International Journal of Distributed Sensor Networks, , vol. 17(2), pages 15501477219, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720932749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.