IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i5p1550147720919698.html
   My bibliography  Save this article

IFed: A novel federated learning framework for local differential privacy in Power Internet of Things

Author

Listed:
  • Hui Cao
  • Shubo Liu
  • Renfang Zhao
  • Xingxing Xiong

Abstract

Nowadays, wireless sensor network technology is being increasingly popular which is applied to a wide range of Internet of Things. Especially, Power Internet of Things is an important and rapidly growing section in Internet of Thing systems, which benefited from the application of wireless sensor networks to achieve fine-grained information collection. Meanwhile, the privacy risk is gradually exposed, which is the widespread concern for electricity power consumers. Non-intrusive load monitoring, in particular, is a technique to recover state of appliances from only the energy consumption data, which enables adversary inferring the behavior privacy of residents. There can be no doubt that applying local differential privacy to achieve privacy preserving in the local setting is more trustworthy than centralized approach for electricity customers. Although it is hard to control the risk and achieve the trade-off between privacy and utility by traditional local differential privacy obfuscation mechanisms, some existing obfuscation mechanisms based on artificial intelligence, called advanced obfuscation mechanisms, can achieve it. However, the large computing resource consumption to train the machine learning model is not affordable for most Power Internet of Thing terminal. In this article, to solve this problem, IFed was proposed—a novel federated learning framework that let electric provider who normally is adequate in computing resources to help Power Internet of Thing users. First, the optimized framework was proposed in which the trade-off between local differential privacy, data utility, and resource consumption was incorporated. Concurrently, the following problem of privacy preserving on the machine learning model transport between electricity provider and customers was noted and resolved. Last, users were categorized based on different levels of privacy requirements, and stronger privacy guarantee was provided for sensitive users. The formal local differential privacy analysis and the experiments demonstrated that IFed can fulfill the privacy requirements for Power Internet of Thing users.

Suggested Citation

  • Hui Cao & Shubo Liu & Renfang Zhao & Xingxing Xiong, 2020. "IFed: A novel federated learning framework for local differential privacy in Power Internet of Things," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720919698
    DOI: 10.1177/1550147720919698
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720919698
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720919698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Shuang & Meng, Fanlin & Wang, Qian & Chen, Xizhong, 2024. "DP2-NILM: A distributed and privacy-preserving framework for non-intrusive load monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720919698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.