IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i3p1550147720914257.html
   My bibliography  Save this article

STBS-Stega: Coverless text steganography based on state transition-binary sequence

Author

Listed:
  • Ning Wu
  • Zhongliang Yang
  • Yi Yang
  • Lian Li
  • Poli Shang
  • Weibo Ma
  • Zhenru Liu

Abstract

Information-hiding technology has recently developed into an area of significant interest in the field of information security. As one of the primary carriers in steganography, it is difficult to hide information in texts because there is insufficient information redundancy. Traditional text steganography methods are generally not robust or secure. Based on the Markov chain model, a new text steganography approach is proposed that focuses on transition probability, one of the most important concepts of the Markov chain model. We created a state transition-binary sequence diagrams based on the aforementioned concepts and used them to guide the generation of new texts with embedded secret information. Compared to other related works, the proposed method exploits the use of the transition probability in the process of steganographic text generation. The associated developed algorithm also encrypts the serial number of the state transition-binary sequence diagram needed by the receiver to extract the information, which further enhances the security of the steganography information. Experiments were designed to evaluate the proposed model. The results revealed that the model had higher concealment and hidden capacity compared to previous methods.

Suggested Citation

  • Ning Wu & Zhongliang Yang & Yi Yang & Lian Li & Poli Shang & Weibo Ma & Zhenru Liu, 2020. "STBS-Stega: Coverless text steganography based on state transition-binary sequence," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:3:p:1550147720914257
    DOI: 10.1177/1550147720914257
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720914257
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720914257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Abdul Majeed & Rossilawati Sulaiman & Zarina Shukur & Mohammad Kamrul Hasan, 2021. "A Review on Text Steganography Techniques," Mathematics, MDPI, vol. 9(21), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:3:p:1550147720914257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.