IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i2p1550147720907832.html
   My bibliography  Save this article

Robust control of hydraulic tracked vehicle drive system based on quantitative feedback theory

Author

Listed:
  • Chenhui Zhu
  • Hongmei Zhang
  • Wanzhang Wang
  • Kang Li
  • Wanru Liu

Abstract

To improve the control precision of the drive system of hydraulic tracked vehicles, we established a mathematical model of the drive system based on the analysis of structural characteristics of the high-clearance hydraulic tracked vehicles and the dual-pump dual-motor drive system and developed a control strategy based on the quantitative feedback theory. First, the mutual independence of the two motor channels was achieved through channel decoupling. Then, the loop-shaping controller and the pre-filter were designed for the two channels. The result of a simulation experiment indicates that the proposed control method is very effective in suppressing external uncertainties and smoothening the speed-switching process of the hydraulic motor. Finally, an hydraulic tracked vehicle steering experimental test was carried out. The results show that under two different steering modes, the maximum standard deviation of the output speeds of the inner and outer motors of the hydraulic tracked vehicle is only 0.42, which meets the performance requirement on the hydraulic motor speed. The average steering track radii of the geometric centers of the inner and outer tracks are 1.828 and 0.033 m, respectively, and the relative errors are 1.56% and 3.19%, respectively. This demonstrates that the proposed control method achieves satisfactory results in the robust control of the hydraulic tracked vehicle drive system. It provides some references for the future control research of the hydraulic servo drive system of the high-clearance hydraulic tracked vehicles.

Suggested Citation

  • Chenhui Zhu & Hongmei Zhang & Wanzhang Wang & Kang Li & Wanru Liu, 2020. "Robust control of hydraulic tracked vehicle drive system based on quantitative feedback theory," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720907832
    DOI: 10.1177/1550147720907832
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720907832
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720907832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huajun Chen & Meng Wang & Xiangdong Ni & Wenqing Cai & Chunfa Zhong & Haoyun Ye & Yongqiang Zhao & Wenlong Pan & Yuangang Lin, 2023. "Design of Hydrostatic Power Shift Compound Drive System for Cotton Picker Experiment," Agriculture, MDPI, vol. 13(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720907832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.