IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i11p1550147720971513.html
   My bibliography  Save this article

Genetic algorithm–optimized support vector machine for real-time activity recognition in health smart home

Author

Listed:
  • Yan Hu
  • Bingce Wang
  • Yuyan Sun
  • Jing An
  • Zhiliang Wang

Abstract

Health smart home, as a typical application of Internet of things, provides a new solution for remote medical treatment. It can effectively relieve pressure from shortage of medical resources caused by aging population and help elderly people live at home more independently and safely. Activity recognition is the core of health smart home. This technology aims to recognize the activity patterns of users from a series of observations on the user’ actions and the environmental conditions, so as to avoid distress situations as much as possible. However, most of the existing researches focus on offline activity recognition, but not good at online real-time activity recognition. Besides, the feature representation techniques used for offline activity recognition are generally not suitable for online scenarios. In this article, the authors propose a real-time online activity recognition approach based on the genetic algorithm–optimized support vector machine classifier. In order to support online real-time activity recognition, a new sliding window-based feature representation technique enhanced by mutual information between sensors is devised. In addition, the genetic algorithm is used to automatically select optimal hyperparameters for the support vector machine model, thereby reducing the recognition inaccuracy caused by manual tuning of hyperparameters. Finally, a series of comprehensive experiments are conducted on freely available data sets to validate the effectiveness of the proposed approach.

Suggested Citation

  • Yan Hu & Bingce Wang & Yuyan Sun & Jing An & Zhiliang Wang, 2020. "Genetic algorithm–optimized support vector machine for real-time activity recognition in health smart home," International Journal of Distributed Sensor Networks, , vol. 16(11), pages 15501477209, November.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720971513
    DOI: 10.1177/1550147720971513
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720971513
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720971513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang-Mo Jung, 2015. "Support Vector Machines for Unbalanced Multicategory Classification," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720971513. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.