IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i8p1550147719865882.html
   My bibliography  Save this article

Deep learning–based fifth-generation millimeter-wave communication channel tracking for unmanned aerial vehicle Internet of things networks

Author

Listed:
  • Shan Meng
  • Xin Dai
  • Bicheng Xiao
  • Yimin Zhou
  • Yumei Li
  • Chong Gao

Abstract

Using unmanned aerial vehicle as movable base stations is a promising approach to enhance network coverage. Moreover, movable unmanned aerial vehicle–base stations can dynamically move to the target devices to expand the communication range as relays in the scenario of the Internet of things. In this article, we consider a communication system with movable unmanned aerial vehicle–base stations in millimeter-Wave. The movable unmanned aerial vehicle–base stations are equipped with antennas and multiple sensors for channel tracking. The cylindrical array antenna is mounted on the movable unmanned aerial vehicle–movable base stations, making the beam omnidirectional. Furthermore, the attitude estimation method using the deep neural network can replace the traditional attitude estimation method. The estimated unmanned aerial vehicle attitude information is combined with beamforming technology to realize a reliable communication link. Simulation experiments have been performed, and the results have verified the effectiveness of the proposed method.

Suggested Citation

  • Shan Meng & Xin Dai & Bicheng Xiao & Yimin Zhou & Yumei Li & Chong Gao, 2019. "Deep learning–based fifth-generation millimeter-wave communication channel tracking for unmanned aerial vehicle Internet of things networks," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719865882
    DOI: 10.1177/1550147719865882
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719865882
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719865882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping-Huan Kuo & Ssu-Ting Lin & Jun Hu, 2020. "DNAE-GAN: Noise-free acoustic signal generator by integrating autoencoder and generative adversarial network," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719865882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.