IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i5p1550147719849357.html
   My bibliography  Save this article

Human activity recognition via smart-belt in wireless body area networks

Author

Listed:
  • Yuhong Zhu
  • Jingchao Yu
  • Fengye Hu
  • Zhijun Li
  • Zhuang Ling

Abstract

Human activity recognition based on wireless body area networks plays an essential role in various applications such as health monitoring, rehabilitation, and physical training. Currently, most of the human activity recognition is based on smartphone, and it provides more possibilities for this task with the rapid proliferation of wearable devices. To obtain satisfactory accuracy and adapt to various scenarios, we built a smart-belt which embedded the VG350 as posture data collector. This article proposes a hierarchical activity recognition structure, which divides the recognition process into two levels. Then a multi-classification Support Vector Machine algorithm optimized by Particle Swarm Optimization is applied to identify five kinds of conventional human postures. And we compare the effectiveness of triaxial accelerometer and gyroscope when used together and separately. Finally, we conduct systematic performance analysis. Experimental results show that our overall classification accuracy is 92.3% and the F-Measure can reach 92.63%, which indicates the human activity recognition system is accurate and effective.

Suggested Citation

  • Yuhong Zhu & Jingchao Yu & Fengye Hu & Zhijun Li & Zhuang Ling, 2019. "Human activity recognition via smart-belt in wireless body area networks," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719849357
    DOI: 10.1177/1550147719849357
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719849357
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719849357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719849357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.