IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i4p1550147719844929.html
   My bibliography  Save this article

In-flight alignment method of navigation system based on microelectromechanical systems sensor measurement

Author

Listed:
  • Jianwei Liu
  • Tao Zhao

Abstract

Inertial navigation systems based on microelectromechanical systems (MEMS) sensors offer advantages that include small size, light weight, low power consumption, strong environmental adaptability, and low cost. These advantages make these sensors particularly suitable for application to precision-guided munitions, which commonly have poor launching environments, strict volume and power consumption requirements, and high cost sensitivity. In this article, the key technologies required for missile-borne integrated navigation systems and the solutions for the problems with each of these technologies are analyzed. An attitude angle estimation method for satellite-assisted MEMS measurement information is proposed that solves the in-flight alignment problem. A high-precision combination of satellite positioning and microinertial navigation is realized through design of a new integrated algorithm framework. The experimental results show that the proposed methods can effectively solve the current problems in guided ammunition navigation.

Suggested Citation

  • Jianwei Liu & Tao Zhao, 2019. "In-flight alignment method of navigation system based on microelectromechanical systems sensor measurement," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719844929
    DOI: 10.1177/1550147719844929
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719844929
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719844929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719844929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.