IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i4p1550147719842729.html
   My bibliography  Save this article

Human activity recognition method based on molecular attributes

Author

Listed:
  • Hengnian Qi
  • Kai Fang
  • Xiaoping Wu
  • Lili Xu
  • Qing Lang

Abstract

Acceleration sensor is extensively used in the field of human activity recognition, since it provides better recognition rate of human activity. Based on the principle of molecular attribute, a simple and adaptive activity recognition method is proposed using the acceleration data flow, which constitutes a serial activity, when the acceleration data are treated as the material flow with certain molecular structure. Then five molecular attributes including relative molecular mass, density, internal forces in a molecule, molecule stability, and attraction between molecules are introduced to recognize six human activities, since the closer molecular attribute means the more similar activity. Based on the calculated molecular attributes, a reliability-based voting method for human activity recognition is developed. Since each activity has respective motion cycle, a sliding window with variable sizes is put forward to enhance the recognition rate. Furthermore, adaptive incremental learning is designed to adapt to the different users. The long-time experimental results show that the proposed method is rather accurate and robust for different crowds. The average recognition rate achieves 97.2% for six human activities including walking, jogging, running, going upstairs, going downstairs, and sitting down.

Suggested Citation

  • Hengnian Qi & Kai Fang & Xiaoping Wu & Lili Xu & Qing Lang, 2019. "Human activity recognition method based on molecular attributes," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719842729
    DOI: 10.1177/1550147719842729
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719842729
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719842729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesc Pozo & Diego A Tibaduiza & Miguel à ngel Torres-Arredondo & Margarita Varón & Hernán Dario Ceron-Muñoz, 2020. "Editorial," International Journal of Distributed Sensor Networks, , vol. 16(9), pages 15501477209, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719842729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.