IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i4p1550147719839014.html
   My bibliography  Save this article

An edge cloud–based body data sensing architecture for artificial intelligence computation

Author

Listed:
  • TaeYoung Kim
  • JongBeom Lim

Abstract

As various applications and workloads move to the cloud computing system, traditional approaches of processing sensor data cannot be applied. Specifically, tenants may experience incompatibility and unpredictable performance variation due to inefficient implementations. In this article, we present an edge cloud–based body data sensing architecture for artificial intelligence computation. The main rationale for designing the edge cloud–based sensing architecture is as follows. By analyzing physical body data on the edge cloud computing system, we can identify the relationship between body activities and health conditions for persons. In addition, we can support real-time applications without catastrophic failures by our efficient and stable implementation of the sensing architecture. Our cloud storage architecture is designed to support both stateful and stateless applications, which are compatible with traditional infrastructures and provide server consolidation with a CPU-aware scheduling of virtual machines. Performance results show that our edge cloud–based architecture outperforms the previous architecture in terms of failures, processing time, and scalability.

Suggested Citation

  • TaeYoung Kim & JongBeom Lim, 2019. "An edge cloud–based body data sensing architecture for artificial intelligence computation," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719839014
    DOI: 10.1177/1550147719839014
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719839014
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719839014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominika Cupkova & Erik Kajati & Jozef Mocnej & Peter Papcun & Jiri Koziorek & Iveta Zolotova, 2019. "Intelligent human-centric lighting for mental wellbeing improvement," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719839014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.