IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i3p1550147719834427.html
   My bibliography  Save this article

A dynamic localization network for regional navigation under global navigation satellite system denial environments

Author

Listed:
  • Hongwei Zhao
  • Yue Yan
  • Xiaozhu Shi

Abstract

Global navigation satellite system signals are easily distorted by the interferences or disturbances, and global navigation satellite system receivers cannot offer continuous effective navigation results in challenging environments. As a representative regional augmentation technology, pseudolite has the potential to provide accurate positioning service to satisfy specific performance requirements in various applications. In this article, we developed a dynamic localization network based on pseudolite technology for regional augmentation navigation purpose. First, the collaborative positioning algorithm is given, and the architecture of localization system is proposed. Then the error sources of localization system are analyzed for performance evaluation. Finally, the proposed system is verified by experiments conducted in both static and kinenatic scenarios. The experiment results demonstrate that the positioning accuracy of the proposed localization system is nearly 10 m, which is close to the global navigation satellite system single-point positioning accuracy. Therefore, it can be used for emergency dynamic positioning of critical areas under the global navigation satellite system denial environments.

Suggested Citation

  • Hongwei Zhao & Yue Yan & Xiaozhu Shi, 2019. "A dynamic localization network for regional navigation under global navigation satellite system denial environments," International Journal of Distributed Sensor Networks, , vol. 15(3), pages 15501477198, March.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:3:p:1550147719834427
    DOI: 10.1177/1550147719834427
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719834427
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719834427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:3:p:1550147719834427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.