IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i2p1550147719826048.html
   My bibliography  Save this article

Class imbalance learning–driven Alzheimer’s detection using hybrid features

Author

Listed:
  • Ran Baik

Abstract

Alzheimer’s is the main reason which leads to memory loss of a human being. The living style of an affected person also varies. This variation in the lifestyle creates difficulties for a person to spend a normal life. The detection of Alzheimer’s disease in the initial stage accurately has a great significance in the early treatment of the disease. Therefore, it is considered as a challenging task. An efficient method is proposed to detect the Alzheimer’s disease in the early stage using magnetic resonance imaging. k -Means clustering is used to develop the proposed method for efficient segmentation of the white matter, cerebrospinal fluid, and grey matter. The amalgam feature vectors are formed using the grey-level co-occurrence matrix and speeded-up robust features based on textural feature extraction. Statistical and histogram of gradients is used from shape-based features. Fisher linear discriminant analysis is used for dimensionality reduction and the resampling method is used to handle the class imbalance problem. The algorithm is evaluated using the three classifiers k -nearest neighbour, support vector machine and random forest. The dataset of OASIS is used to assess the outcomes. The proposed approach achieved the optimum accuracy of 92.7%.

Suggested Citation

  • Ran Baik, 2019. "Class imbalance learning–driven Alzheimer’s detection using hybrid features," International Journal of Distributed Sensor Networks, , vol. 15(2), pages 15501477198, February.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719826048
    DOI: 10.1177/1550147719826048
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719826048
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719826048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719826048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.