IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i11p1550147719883133.html
   My bibliography  Save this article

A deep learning platooning-based video information-sharing Internet of Things framework for autonomous driving systems

Author

Listed:
  • Zishuo Zhou
  • Zahid Akhtar
  • Ka Lok Man
  • Kamran Siddique

Abstract

To enhance the safety and stability of autonomous vehicles, we present a deep learning platooning-based video information-sharing Internet of Things framework in this study. The proposed Internet of Things framework incorporates concepts and mechanisms from several domains of computer science, such as computer vision, artificial intelligence, sensor technology, and communication technology. The information captured by camera, such as road edges, traffic lights, and zebra lines, is highlighted using computer vision. The semantics of highlighted information is recognized by artificial intelligence. Sensors provide information on the direction and distance of obstacles, as well as their speed and moving direction. The communication technology is applied to share the information among the vehicles. Since vehicles have high probability to encounter accidents in congested locations, the proposed system enables vehicles to perform self-positioning with other vehicles in a certain range to reinforce their safety and stability. The empirical evaluation shows the viability and efficacy of the proposed system in such situations. Moreover, the collision time is decreased considerably compared with that when using traditional systems.

Suggested Citation

  • Zishuo Zhou & Zahid Akhtar & Ka Lok Man & Kamran Siddique, 2019. "A deep learning platooning-based video information-sharing Internet of Things framework for autonomous driving systems," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719883133
    DOI: 10.1177/1550147719883133
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719883133
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719883133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719883133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.