IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i9p1550147718794611.html
   My bibliography  Save this article

Dynamic response and damage character of road embankment under strong earthquake

Author

Listed:
  • Jian Wang
  • Qimin Li
  • Changwei Yang
  • Caizhi Zhou

Abstract

Dynamic response of road embankment under strong earthquake was explored by site investigation, shaking table tests, and discrete element method simulations, which shows that the distribution of responded accelerations strongly depends on the amplitude of input ground motion and the height of road embankment. When the peak ground acceleration of ground motion is small, peak ground acceleration amplification factors will linearly increase from the toe to the top of the slope; then, it will step into non-linear amplification; when the peak ground acceleration of ground motion is large enough, it will transform from amplification to attenuation. There is a logarithmic relationship between the magnitude of acceleration and the slope amplification factor, and the critical acceleration making the peak ground acceleration transform from amplification to attenuation increases with the raise of embankment height and connects with spectral characteristics of ground motion. There is a logarithmic relationship between the input ground acceleration and the amplification ratio of slope top to toe, and the critical acceleration making the peak ground acceleration transform from amplification to attenuation increases with the raise of embankment height and connects with spectral characteristics of ground motion. The results found should be useful for aseismic of road embankment as well as railway subgrade.

Suggested Citation

  • Jian Wang & Qimin Li & Changwei Yang & Caizhi Zhou, 2018. "Dynamic response and damage character of road embankment under strong earthquake," International Journal of Distributed Sensor Networks, , vol. 14(9), pages 15501477187, September.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718794611
    DOI: 10.1177/1550147718794611
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718794611
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718794611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718794611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.