IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i8p1550147718795746.html
   My bibliography  Save this article

Experimental and numerical studies on the vibration serviceability of fanshaped prestressed concrete floor

Author

Listed:
  • Liang Cao
  • Hongtuo Qi
  • Jiang Li

Abstract

An extensive experimental and numerical research was undertaken to study the vibration serviceability of a long-span fanshaped prestressed concrete floor system to be used in the lounge of a major airport. Specifically heel-drop and jumping impact tests were conducted to obtain the natural frequencies and modal damping ratios of the floor system, followed by the discussion on the distribution of peak accelerations. Running tests and simulation were also performed to capture the acceleration responses. Moreover, the finite element method was used to evaluate the dynamic characteristics. The floor system is found to have a low fundamental frequency (≈6.00 Hz) and the corresponding modal damping ratio (average ≈2.20%). The comparison of the experimental results with the published American institute of steel construction (AISC) design guide indicates that the prestressed concrete floor system exhibits satisfactory vibration perceptibility overall. The study results also show that the intensity and the location of impact excitation have a significant influence on the rate of acceleration decay. A crest factor β rp is proposed based on the test results to calculate the maximum root mean square acceleration for running for convenience.

Suggested Citation

  • Liang Cao & Hongtuo Qi & Jiang Li, 2018. "Experimental and numerical studies on the vibration serviceability of fanshaped prestressed concrete floor," International Journal of Distributed Sensor Networks, , vol. 14(8), pages 15501477187, August.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718795746
    DOI: 10.1177/1550147718795746
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718795746
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718795746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718795746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.