IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i8p1550147718795355.html
   My bibliography  Save this article

A task allocation strategy for complex applications in heterogeneous cluster–based wireless sensor networks

Author

Listed:
  • Xiang Yin
  • Kaiquan Zhang
  • Bin Li
  • Arun Kumar Sangaiah
  • Jin Wang

Abstract

To a wireless sensor network, cooperation among multiple sensors is necessary when it executes applications that consist of several computationally intensive tasks. Most previous works in this field concentrated on energy savings as well as load balancing. However, these schemes merely considered the situations where only one type of resource is required which drastically constrains their practical applications. To alleviate this limitation, in this article, we investigate the issue of complex application allocation, where various distinctive types of resources are demanded. We propose a heuristic-based algorithm for distributing complex applications in clustered wireless sensor networks. The algorithm is partitioned into two phases, in the inter-cluster allocation stage, tasks of the application are allocated to various clusters with the purpose of minimizing energy consumption, and in the intra-cluster allocation stage, the task is distributed to appropriate sensor nodes with the consideration of both energy cost and workload balancing. In so doing, the energy dissipation can be reduced and balanced, and the lifetime of the system is extended. Simulations are conducted to evaluate the performance of the proposed algorithm, and the results demonstrate that the proposed algorithm is superior in terms of energy consumption, load balancing, and efficiency of task allocation.

Suggested Citation

  • Xiang Yin & Kaiquan Zhang & Bin Li & Arun Kumar Sangaiah & Jin Wang, 2018. "A task allocation strategy for complex applications in heterogeneous cluster–based wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 14(8), pages 15501477187, August.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718795355
    DOI: 10.1177/1550147718795355
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718795355
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718795355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harshita Patel & Dharmendra Singh Rajput & G Thippa Reddy & Celestine Iwendi & Ali Kashif Bashir & Ohyun Jo, 2020. "A review on classification of imbalanced data for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718795355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.