IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i5p1550147718779563.html
   My bibliography  Save this article

Mining spatial–temporal motion pattern for vessel recognition

Author

Listed:
  • Lu Sun
  • Wei Zhou
  • Jian Guan
  • You He

Abstract

Approaches of vessel recognition are mostly accomplished by sensing targets and extracting target features, without taking advantage of spatial and temporal motion features. With maritime situation management systems widely applied, vessels’ spatial and temporal state information can be obtained by many kinds of distributed sensors, which is easy to achieve long-time accumulation but are often forgotten in databases. In order to get valuable information from large-scale stored trajectories for unknown vessel recognition, a spatial and temporal constrained trajectory similarity model and a mining algorithm based on spatial and temporal constrained trajectory similarity are proposed in this article by searching trajectories with similar motion features. Based on the idea of finding matching points between trajectories, baseline matching points are first defined to provide time reference for trajectories at different time, then the almost matching points are obtained by setting the spatial and temporal constraints, and the similarity of pairwise almost matching points is defined, which derives the spatial and temporal similarity of trajectories. By searching the matching points from trajectories, the similar motion pattern is extracted. Experiments on real data sets show that the proposed algorithm is useful for similar moving behavior mining from historic trajectories, which can strengthen motion feature with the length increases, and the support for vessel with unknown property is larger than other models.

Suggested Citation

  • Lu Sun & Wei Zhou & Jian Guan & You He, 2018. "Mining spatial–temporal motion pattern for vessel recognition," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718779563
    DOI: 10.1177/1550147718779563
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718779563
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718779563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718779563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.