IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i5p1550147718777440.html
   My bibliography  Save this article

A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques

Author

Listed:
  • Peng Chen
  • Yonghong Xie
  • Pei Jin
  • Dezheng Zhang

Abstract

As the integral part of the new generation of information technology, the Internet of things significantly accelerates the intelligent sensing and data fusion in different industrial processes including mining, assisting people to make appropriate decision. These days, an increasing number of coal mine disasters pose a serious threat to people’s lives and property especially in several developing countries. In order to assess the risks arisen from gas explosion or gas poisoning, wireless sensor data should be processed and classified efficiently. Due to the fact that the “negative samples†of coal mine safety data are scarce, least squares support vector machine is introduced to deal with this problem. In addition, several swarm intelligence techniques such as particle swarm optimization, artificial bee colony algorithm, and genetic algorithm are applied to optimize the hyper parameters of least squares support vector machine. Using the popular deep neural networks, convolutional neural network and long short-term memory model, as comparisons, a number of experiments are carried out on several UCI machine learning datasets with different features. Experimental results show that least squares support vector machine optimized by swarm intelligence techniques can effectively handle classification task on different datasets especially on those datasets with limited samples and mixed attributes. The application of least squares support vector machine optimized by swarm intelligence techniques on real coal mine data demonstrates that this algorithm can process the data accurately and timely, therefore can warn of the accidents early in mining workplace.

Suggested Citation

  • Peng Chen & Yonghong Xie & Pei Jin & Dezheng Zhang, 2018. "A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718777440
    DOI: 10.1177/1550147718777440
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718777440
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718777440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718777440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.