IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i5p1550147718774467.html
   My bibliography  Save this article

An anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks

Author

Listed:
  • Qi Yang
  • Xuan Zhang
  • Jingfeng Qian
  • Qiang Ye

Abstract

In wireless sensor networks, time synchronization is an important issue for all nodes to have a unified time. The wireless sensor network nodes should cooperatively adjust their local time according to certain distributed synchronization algorithms to achieve global time synchronization. Conventionally, it is assumed that all nodes in the network are cooperative and well-functioned in the synchronization process. However, in cognitive radio wireless sensor networks, the global time synchronization process among secondary users is prone to fail because the communication process for exchanging synchronization reference may be frequently interrupted by the primary users. The anomaly nodes that failed to synchronize will significantly affect the global convergence performance of the synchronization algorithm. This article proposes an anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks. The proposed method adopts the statistical linear correlation analysis approach to detect anomaly nodes through the historical time synchronization information stored in local nodes. Simulation results show that the proposed method can effectively improve the robustness of the synchronization algorithm in distributed cognitive radio sensor networks.

Suggested Citation

  • Qi Yang & Xuan Zhang & Jingfeng Qian & Qiang Ye, 2018. "An anomaly node detection method for distributed time synchronization algorithm in cognitive radio sensor networks," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718774467
    DOI: 10.1177/1550147718774467
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718774467
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718774467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongli Dong & Zidong Wang & Steven X. Ding & Huijun Gao, 2014. "A Survey on Distributed Filtering and Fault Detection for Sensor Networks," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Jesús García-Ligero & Aurora Hermoso-Carazo & Josefa Linares-Pérez, 2020. "Distributed Fusion Estimation with Sensor Gain Degradation and Markovian Delays," Mathematics, MDPI, vol. 8(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718774467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.