IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i4p1550147718772545.html
   My bibliography  Save this article

Efficient identity-based authenticated key agreement protocol with provable security for vehicular ad hoc networks

Author

Listed:
  • Lanjun Dang
  • Jie Xu
  • Xuefei Cao
  • Hui Li
  • Jie Chen
  • Yueyu Zhang
  • Xiaotong Fu

Abstract

In vehicular ad hoc networks, establishing a secure channel between any two vehicles is fundamental. Authenticated key agreement is a useful mechanism, which can be used to negotiate a shared key for secure data transmission between authentic vehicles in vehicular ad hoc networks. Among the existing identity-based two-party authenticated key agreement protocols without pairings, there are only a few protocols that provide provable security in strong security models such as the extended Canetti–Krawczyk model. This article presents an efficient pairing-free identity-based one-round two-party authenticated key agreement protocol with provable security, which is more suitable for real-time application environments with highly dynamic topology such as vehicular ad hoc networks than the existing identity-based two-party authenticated key agreement protocols. The proposed protocol is proven secure under the passive and active adversaries in the extended Canetti–Krawczyk model based on the Gap Diffie–Hellman assumption. The proposed protocol can capture all essential security attributes including known-session key security, perfect forward secrecy, basic impersonation resistance, key compromise impersonation resistance, unknown key share resistance, no key control, and ephemeral secrets reveal resistance. Compared with the existing identity-based two-party authenticated key agreement protocols, the proposed protocol is superior in terms of computational cost and running time while providing higher security.

Suggested Citation

  • Lanjun Dang & Jie Xu & Xuefei Cao & Hui Li & Jie Chen & Yueyu Zhang & Xiaotong Fu, 2018. "Efficient identity-based authenticated key agreement protocol with provable security for vehicular ad hoc networks," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772545
    DOI: 10.1177/1550147718772545
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718772545
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718772545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.