IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i4p1550147718771300.html
   My bibliography  Save this article

Reflector-aided direct locations of multiple signals in the presence of small reflector position biases

Author

Listed:
  • Jiexin Yin
  • Ding Wang
  • Ying Wu
  • Zhidong Wu

Abstract

Direct position determination (DPD) is a single-step method that localizes transmitters from sensor outputs without computing intermediate parameters. It outperforms conventional two-step localization methods, especially under low signal-to-noise ratio conditions. This article proposes a reflector-aided DPD algorithm for multiple signals of known waveforms received by an array observer. In previous studies, reflector-aided localization has always required very precise locations of reflectors. Therefore, the localization performance depends sensitively on accurately knowing each reflector position. This study considers the presence of small biases in reflector locations. To make the problem tractable, we simplify the signal model through an approximation using the first-order Taylor expansion and then directly localize multiple sources in a decoupled manner. Unlike most DPDs that presume noise is spatially uncorrelated, our study imposes no restriction on the correlation structure of noise, allowing this algorithm to be used in more general scenarios. In addition, we derive the Cramér–Rao bound expression and perform an analysis of the direct locations of multiple signals when the reflector positions are assumed accurate but in fact have small biases. Simulation results corroborate the theoretical results and a good localization performance of the proposed algorithm in the presence of small reflector position biases.

Suggested Citation

  • Jiexin Yin & Ding Wang & Ying Wu & Zhidong Wu, 2018. "Reflector-aided direct locations of multiple signals in the presence of small reflector position biases," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718771300
    DOI: 10.1177/1550147718771300
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718771300
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718771300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718771300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.