IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i4p1550147718768990.html
   My bibliography  Save this article

Wireless rechargeable sensor networks with separable charger array

Author

Listed:
  • Chengjie Xu
  • Rei-Heng Cheng
  • Tung-Kuang Wu

Abstract

Wireless charging technology has been developing rapidly in recent years and has been used to deliver power and provide a new source of energy for wireless rechargeable sensor networks. With current solutions, charging is usually done by a mobile vehicle equipped with a charger, which needs to be waiting on site until the sensor is properly charged. It is possible that some sensors drain their power while the charging vehicle is serving the other. Accordingly, we proposed a solution that uses a single charging vehicle equipped with multiple battery cells, which we call the separable charging array. The battery cell can be unloaded on site with sensor, while the vehicle carries on its mission. A scheduling algorithm, a revised earliest deadline first algorithm, is proposed to work with this new model. In this study, we will demonstrate that the idea of equipping charging vehicle with separable charger array is feasible. In addition, our simulations indicate that the revised earliest deadline first scheduling algorithm does improve the earliest deadline first scheduling algorithm significantly with only minor overhead in scheduling computation time and very few extra chargers. Some modified variations of the proposed revised earliest deadline first algorithm will also be discussed and evaluated.

Suggested Citation

  • Chengjie Xu & Rei-Heng Cheng & Tung-Kuang Wu, 2018. "Wireless rechargeable sensor networks with separable charger array," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718768990
    DOI: 10.1177/1550147718768990
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718768990
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718768990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing-Jing Chen & Chang Wu Yu & Wen Liu, 2023. "A Long-Distance First Matching Algorithm for Charging Scheduling in Wireless Rechargeable Sensor Networks," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718768990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.