IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i2p1550147718759234.html
   My bibliography  Save this article

Connection looseness detection of steel grid structures using piezoceramic transducers

Author

Listed:
  • Shi Yan
  • Weiling Liu
  • Gangbing Song
  • Putian Zhao
  • Shuai Zhang

Abstract

Connection looseness phenomena of steel grid structures might induce issues of lowering integrity, large deformation, even total collapse of the structures. The goal of this article is to propose an evaluation method for bolt-sphere joint looseness of steel grid structures using piezoceramic guided wave–based method through experiments and numerical simulations. A single bolt-sphere joint looseness experimental model is established and tested, considering grid member connection angles of 0°, 45°, 90°, and 180°, respectively. Then, multiple bolt-sphere joint looseness detection tests by selecting six kinds of cases for a steel grid structure model are performed. Piezoceramic patch arrays bonded on the surface of grid members are used as transducers to generate and receive detection guided waves, and external torques are applied to indirectly simulate the bolt-sphere joint looseness effect. The experimental results show that the bolt-sphere joint looseness impact on the ultrasonic wave energy attenuation has a nonlinear regularity. Based on the regularity, an evaluation method and key techniques for the bolt-sphere joint looseness detection based on guided wave energy are proposed and experimentally validated. To further clarify the bolt-sphere joint looseness detection mechanism, the ABAQUS software is used for a finite element analysis of the single bolt-sphere joint looseness evaluation. The numerical and experimental results match well, verifying the feasibility of the proposed method.

Suggested Citation

  • Shi Yan & Weiling Liu & Gangbing Song & Putian Zhao & Shuai Zhang, 2018. "Connection looseness detection of steel grid structures using piezoceramic transducers," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:2:p:1550147718759234
    DOI: 10.1177/1550147718759234
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718759234
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718759234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:2:p:1550147718759234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.