IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i1p1550147718754729.html
   My bibliography  Save this article

Security–reliability tradeoff analysis of untrusted energy harvesting relay networks

Author

Listed:
  • Dechuan Chen
  • Weiwei Yang
  • Jianwei Hu
  • Weifeng Mou
  • Yueming Cai

Abstract

We investigate secure communications in untrusted energy harvesting relay networks, where the amplify-and-forward relay is an energy constrained node powered by the received radio frequency signals, and try to unauthorizedly decode the confidential information from the source. The secrecy outage probability and connection outage probability are respectively derived in closed-form to evaluate the security and reliability for three energy harvesting strategies, for example, time switching relaying strategy, power splitting relaying strategy, and ideal relaying receiver strategy. Subsequently, the effective secrecy throughput is conducted to characterize the overall efficiency, and the asymptotic analysis of the secrecy throughput is given to determine the optimal energy harvesting strategies in different operating regimes. Furthermore, in order to achieve the optimal effective secrecy throughput performance, a switching threshold between time switching relaying and power splitting relaying is designed. Numerical results verify the accuracy of the analytical expressions and reveal that the effective secrecy throughput of the system can be effectively promoted by the threshold switching energy harvesting strategy.

Suggested Citation

  • Dechuan Chen & Weiwei Yang & Jianwei Hu & Weifeng Mou & Yueming Cai, 2018. "Security–reliability tradeoff analysis of untrusted energy harvesting relay networks," International Journal of Distributed Sensor Networks, , vol. 14(1), pages 15501477187, January.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718754729
    DOI: 10.1177/1550147718754729
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718754729
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718754729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718754729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.