IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i12p1550147718818738.html
   My bibliography  Save this article

Noninvasive and continuous blood pressure monitoring with better accuracy by combining pulse arrival time and peak delay

Author

Listed:
  • Yibin Li
  • Shengnan Li
  • Ning Deng

Abstract

In this article, we propose a more accurate method to achieve noninvasive and continuous blood pressure monitoring with the aid of pulse arrival time and peak delay. Theoretical analysis shows that peak delay is positively correlated with the viscoelastic delay. Analysis of 12 subjects indicates that pulse arrival time with the compensation of peak delay (PATC) is much steadier and more robust than traditional pulse arrival time. Three common models (linear, inverse linear, and inverse quadratic) are employed to study the relationship between pulse arrival time/PATC and blood pressure. From pulse arrival time to PATC, the average promotions of correlation coefficient for systolic blood pressure are 0.065, 0.060, and 0.058 for the three models, respectively, accounting for 8.59%, 7.68%, and 7.43% improvement; for diastolic blood pressure are 0.070, 0.067, and 0.064, respectively, accounting for 12.73%, 12.05%, and 11.48% improvement. Finally, we find that peak delay is efficacious against the negative effects of the terminal reflection and the viscoelastic delay on the peripheral pulse wave. Our method is promising in developing novel applications on portable and wearable device for real-time blood pressure monitoring.

Suggested Citation

  • Yibin Li & Shengnan Li & Ning Deng, 2018. "Noninvasive and continuous blood pressure monitoring with better accuracy by combining pulse arrival time and peak delay," International Journal of Distributed Sensor Networks, , vol. 14(12), pages 15501477188, December.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:12:p:1550147718818738
    DOI: 10.1177/1550147718818738
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718818738
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718818738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:12:p:1550147718818738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.