IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718815627.html
   My bibliography  Save this article

A new clothing image retrieval algorithm based on sketch component segmentation in mobile visual sensors

Author

Listed:
  • Haopeng Lei
  • Yugen Yi
  • Yuhua Li
  • Guoliang Luo
  • Mingwen Wang

Abstract

Nowadays, the state-of-the-art mobile visual sensors technology makes it easy to collect a great number of clothing images. Accordingly, there is an increasing demand for a new efficient method to retrieve clothing images by using mobile visual sensors. Different from traditional keyword-based and content-based image retrieval techniques, sketch-based image retrieval provides a more intuitive and natural way for users to clarify their search need. However, this is a challenging problem due to the large discrepancy between sketches and images. To tackle this problem, we present a new sketch-based clothing image retrieval algorithm based on sketch component segmentation. The proposed strategy is to first collect a large scale of clothing sketches and images and tag with semantic component labels for training dataset, and then, we employ conditional random field model to train a classifier which is used to segment query sketch into different components. After that, several feature descriptors are fused to describe each component and capture the topological information. Finally, a dynamic component-weighting strategy is established to boost the effect of important components when measuring similarities. The approach is evaluated on a large, real-world clothing image dataset, and experimental results demonstrate the effectiveness and good performance of the proposed method.

Suggested Citation

  • Haopeng Lei & Yugen Yi & Yuhua Li & Guoliang Luo & Mingwen Wang, 2018. "A new clothing image retrieval algorithm based on sketch component segmentation in mobile visual sensors," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718815627
    DOI: 10.1177/1550147718815627
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718815627
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718815627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718815627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.