IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718811828.html
   My bibliography  Save this article

Primary user characterization for cognitive radio wireless networks using long short-term memory

Author

Listed:
  • Johana Hernández
  • Danilo López
  • Nelson Vera

Abstract

Cognitive radio is a paradigm that proposes managing the radio electric spectrum dynamically by integrating the spectrum sensing, decision-making, sharing, and mobility stages. In the decision-making stage, the best available channel is selected for transmitting secondary user data in an opportunistic fashion, and the success of that stage depends on the efficiency of the primary user characterization model. Use of the long short-term memory technique based on the deep learning concept is proposed in order to reduce the forecasting error present in the future estimation of primary users in the GSM and WiFi frequency bands. The results show that long short-term memory has the capacity needed to improve channel use forecasting significantly more than other methods such as multilayer perceptron neural networks, Bayesian networks, and adaptive neuro-fuzzy inference systems (ANFIS-Grid). It is concluded that although long short-term memory exhibits better performance generating forecasts for time series, computing complexity is higher due to the existence of input, forget, and output gates within the neural structure; therefore, implementation is feasible in cognitive radio networks based on centralized network topologies.

Suggested Citation

  • Johana Hernández & Danilo López & Nelson Vera, 2018. "Primary user characterization for cognitive radio wireless networks using long short-term memory," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718811828
    DOI: 10.1177/1550147718811828
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718811828
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718811828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718811828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.